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‘in the long run they are as effective as human bandits in
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Two Arm Bandit Problem

I Two bandits

I For arm 1: Success probability is p1

I For arm 2: Success probability is p2

I Sequentially play one arm at each trial t = 1, 2, 3, . . .

I Each time reward rt is obtained - rt equals 1 with probability
pi , 0 otherwise

I Want to play arm with larger pi .

I But we do not know p1 or p2. How to proceed?

I Explore and exploit. Bandit setting clarifies the fundamental
tradeoff between explore and exploit.



Clinical trials

I Five experimental drugs. Which drug to give patients?

‘it seems apparent that a considerable saving of individuals
otherwise sacrificed to the inferior (drug) treatment might be
effected’ Thompson, 1933



Placing advertisements on Google

I When a visitor clicks on a display advertisement on a member
website, a portion of the revenue is paid to the site owner while
Google keeps part of the fee. Due to the breadth of companies
advertising through the network, entire businesses depend on
AdSense as their primary source of income. Bulk of 110.8 Billion
Google revenue in 2017.

I Which advts. to place to maximise clicks?



Recommendation Systems

I Which type of movie to recommend to a customer? Drama,
comedy, western classic.

I Which movies to place to maximize viewer selection?



Some other applications

I Which trading strategy gives the best risk adjusted returns

I In transportation, which route to take among many
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Stochastic Multi Armed Bandit Problem

I Multi armed bandit framework provides perhaps the simplest
setting for sequential learning and decision making

I It crisply demonstrates the explore versus exploit trade-off

I We consider

I Regret minimization: Pull arms (i.e., sample from probability
distributions) to maximize expected reward, or equivalently,
minimise expected regret

I Pure exploration to find the best arm.

I How many questions to ask in an interview? How hard should
these questions be?
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Regret minimization

I Given K arms, each arm when pulled gives a random reward.
The reward vector at time t is given by

Xt = (X1,t ,X2,t , . . . ,XK ,t)

where mean EXi ,t = µi .

I Rewards Xi ,t from each arm are iid and lie within [0, 1].

I At each iteration t =, 1, 2, 3, ... learner/algorithm pulls a
single arm Jt and receives a reward XJt ,t . The learner does
not observe the rewards from other arms
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I The regret equals

R(n) =
n∑

t=1

Xj∗,t −
n∑

t=1

XJt ,t

where j∗ is the index of the best arm.

I The aim of regret minimization is to sequentially pull arms so
as to minimise the expected regret

ER(n) = n × µ∗ −
n∑

t=1

EXJt ,t =
K∑

i=1

ETi (n)×∆i

where Ti (n) denote the number of times arm i pulled in n
trials. ∆i = µ∗ − µi . µ∗ = maxi≤K EXi ,t
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Equal sample strategy

I Each arm is given equal number of samples n/K .

I Regret equals (
1

K

∑

a

∆a

)
n

I It is linear in n
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Greedy strategy

I Jt+1 = arg maxa µ̂a(t), where

µ̂a(t) =
1

Ta(t)

t∑

i=1

Xa,i × I (Ji = a)

I Regret is linearly bounded from below by

(µ1 − µ2)× (1− µ1)× µ2 × n

when µ1 corresponds to the largest mean, and µ2 to second
largest.

I Is sub-linear regret achievable?
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Explore then commit strategy

I Set m to be ≤ n/K (n is sampling budget, K is number of
players

I Sample each arm m times. Thereafter, sample the observed
best arm

â = arg max
a
µ̂(Km)

for remaining n − Km trials.

I Regret in two arms N(µ1, 1) and N(µ2, 1) setting.
∆ = µ1 − µ2 > 0.

m∆ + (n − 2m)EI (â = 2) ≤ m∆ + n × exp(−m∆2/4)
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I Logarithmic regret! Requires knowledge of n and ∆.
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Explore then commit strategy: Random switch time

I Two arms N(µ1, 1) and N(µ2, 1) setting. ∆ = µ1 − µ2 > 0.

I Explore uniformly till a random time

τ = inf

[
t : |µ̂1(t)− µ̂2(t)| ≥

(
8 log(n/t)

t

)1/2
]

I Sample the best observed arm thereafter

I Regret ≤ 4
∆ log n∆ + C (log n)1/2

I No need to know ∆.
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The ε Greedy Policy Auer, Cesa-Bianchi,Fisher 2002

I At step t, sample each arm uniformly with probability εt .

I Sample the arm with best sample mean so far with probability
1− εt

I Choose

εt = min

(
C

t
, 1

)

for C a sufficiently large constant
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I For n large enough

ETi (n) ≤ D

∆2
log n

for a constant D > 0 (here ∆ = mini≤K ∆i )
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Upper Confidence Bound (UCB) Algorithm

I Form an optimistic upper confidence bound (UCB) on each
arm

I This UCB is greater than the sample average but converges to
it as the number of samples increase

I It increases if arm is not sampled for a long time -
encouraging exploration

I Algorithm simply involves sampling the arm with the largest
UCB
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Example of Upper Confidence Bound (UCB) Algorithm

UCB Algorithm

1. Sample each arm once

2. At each step t select an arm with index It chosen as

It = arg max
i=1,...,K

(
X̂i ,Ti (t−1) +

√
2 log t

Ti (t − 1)

)

I UCB does a good trade-off between explore and exploit. Each
sub-optimal arm is sampled O(log n) number of times in n
steps.

I The expected regret is of O(log n) in n steps. Better than ε
greedy
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I Can show that

ETi (n) ≤ 8 log n

∆2
i

+ 1 +
π2

3
.

I The regret therefore is also of order log n.



Regret Minimization: Many variants, generalizations exist

I Adversarial bandits

I Contextual bandits

I Continuous arms

I General arm distributions

I Lower bounds on regret for stochastic bandits are known (Lai
and Robbins 85)

ER(n) ≥
∑

i 6=i∗

1

KL(Fi ||F ∗)
log n

I KL-UCB algorithms that match this for large n have been
developed
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Best arm pure exploration
problems



Selection of the Best Arm

I K different arms or probability distributions are compared.

I Do not know the underlying distributions but can generate samples
from them.

I Goal is only to identify the population with the largest mean and
not to actually estimate the means.
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Classical Monte Carlo problem: Finding a distribution or
arm with the largest mean

3	Arms	or	Distributions

1 2 3
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I Do not know the underlying K distributions but can generate
samples from them

I Through sequential sampling, identify the population with the
largest mean with probability of error ≤ pre-specified δ
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Some applications

I Given stochastic models of different road network designs,
finding the one with least average congestion.

I Given a manufacturing system evaluating the best
maintenance strategy.

I Given many medicinal treatments for a given disease, finding
the one that causes maximum benefit on average.
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Popular Successive Rejection Algorithm



Successive rejection algorithm

I Total K arms. Each arm a when sampled gives a Bounded
reward in [0, 1] with mean µa.

I Let a∗ = arg maxa∈A µa and let ∆a = µa∗ − µa.

I Even Dar et al. 2006 devise a sequential sampling strategy to
find a∗ with probability at least 1− δ.

I Expected computational effort

O


∑

a 6=a∗

log(K/δ)

∆2
a
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O


∑

a 6=a∗

log(K/δ)

∆2
a


 .



Successive rejection algorithm

I Sample every arm a once and let µ̂ta be the average reward of
arm a by time t;

I Each arm a such that

µ̂tmax − µ̂ta ≥ 2αt

is removed from consideration. αt =
√

log(5nt2/δ)/(2t);

I t = t + 1; Repeat till one arm left.
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Proof requires Hoeffding’s Inequality

I Suppose that Y1,Y2, . . . ,Yn are independent identically
distributed random variables taking values in [0, 1].

I Let
Sn = Y1 + Y2 + . . .+ Yn

and µ = EYi . Then, for all a ≥ 0,

P(
Sn
n
≥ µ+ a) ≤ exp(−2na2)

and

P(
Sn
n
≤ µ− a) ≤ exp(−2na2)



Key idea
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Nested simulation in finance



Estimating P (maxt=1,...,K (EXt |Yt) > u)

Time =0 Time =K 

Macroeconomic 
 scenario 

Need to mark to market 
Derivatives to evaluate  
loss distribution 

Time =1 



Naive estimator 1
n

∑n
i=1 Ii(maxt=1,...,K X̄m(Yi ,t) > u)

Y11 

Time =0 Time =K Time =1 

Y12 

Y1K Xm(Y11) 

Xm(Y12) 
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Abstract Partition Identification Problem



We consider: Finding the correct partition for vector of
distributions

I Ω is a collection of vectors ω = (ν1, . . . , νK ) where each νi is
a probability distribution.

I Can express Ω = ∪pi=1Ai where the Ai are disjoint

I Given a ω ∈ Ω need to determine which Ai it belongs to.
I Can sample independently from each arm

n

Q

Ai
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We consider: Finding the correct partition for vector of
distributions

I Ω is a collection of vectors ω = (ν1, . . . , νK ) where each νi is
a probability distribution.

I Can express Ω = ∪pi=1Ai where the Ai are disjoint

I Given a ω ∈ Ω need to determine which Ai it belongs to.
I Can sample independently from each arm

n

Q
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Example: Finding the half-space that contains the vector
of means

Ω = A ∪ Ac is a collection of vectors ω = (ν1, ν2) where each νi is
a probability distribution with mean mi

Ac
a1x1 + a2x2 = b

x1

x2

A
(m1,	m2)



Finding if the vector of means lies in a convex set, e.g.,
polytope or its complement

Ac

A

Mean	of	arm	1

M
ea
n	
of
	a
rm

		2



Agenda

I We develop methodology for computing lower bounds on
computational effort for δ - correct algorithms.

I This involves exploiting the geometry of the problem
structure; use of duality or minimax theorem.

I We develop δ correct algorithms with matching computational
bounds in general settings including the half space problem,
the convex and the complement of convex set.
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δ-Correct Algorithm

I Given a vector of arms or probability distributions, an
algorithm specifies

I an adaptive sampling strategy

I a stopping time τ , and finally

I a recommendation (a subset from the partition)

I An algorithm is said to be δ-Correct ,

I if for any µ = (µ1, µ2, . . . , µK ) ∈ Ω,

I it announces in finite time τ , that µ belongs to some set Aj

I with the probability of error bounded above by δ, for all δ > 0.
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Lower bound relies on a key Inequality

I Relies on change of measure arguments that go back at least to Lai
and Robbins 1985.

I Under δ-correct algorithm (Kauffman, Cappe, Garivier 2016), for

µ = (µ1, µ2, . . . , µK ) ∈ A1

and
ν = (ν1, ν2, . . . , νK ) ∈ Ac

1

where each arm i is pulled Ni times,

I we have the ‘separation cost’ inequality

K∑
i=1

EµNi × KL(µi ||νi ) ≥ log

(
1

δ

)
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Rationale for the lower bound

I If X = (Xi,j : i ≤ K , j ≤ Nj) denotes the adaptively generated
samples by δ-correct algorithm,

Pµ(X→ A1) ≥ 1− δ and, for ν ∈ Ac
1

Pν(X→ A1) = Eµ exp


−

K∑

a=1

Na∑

j=1

log
dµa

dνa
(Xa,j)


 I (X→ A1) ≤ δ

I This leads to the inequality

K∑

i=1

EµNi × KL(µi ||νi ) ≥ log

(
1

δ

)
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Some restrictions necessary on
distributions of underlying arms



Selecting	the	best	arm	(two	arms	setting)	Glynn	and	J	2015

Consider		µ =	(µ1, µ2) with	means	(a1,a2)	 a1	>	a2

and									n =	(n1, n2), n1= µ1 with	means	(a1,b2)				b2	>	a1

a1a2 b2

µ1µ2 n2

Under	d Correct	algorithm	lower	bound	on	expected	number	of	
samples	given	to	arm	2	under	P			

EµN2 KL(µ2||n2)	>=		log(1/d)



I Under δ-correct algorithm lower bound on expected number of
samples given to arm 2 under P

EµN2 × KL(µ2||ν2) ≥ log

(
1

δ

)
.

I Then,

EµN2 ≥
1

infν2:m3>m1 KL(µ2||ν2)
log

(
1

δ

)

I Glynn and J. show that if distributions are unbounded,
KL(µ2||ν2) can be made arbitrarily small, hence finite
expected time algorithms not feasible without further
restrictions
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Two dist. - Mean arbitrarily far, KL arbitrarily close

pdf
f(x)

x



We restrict to one parameter exponential families

I Distribution function of each arm has the form

dµ(θ, x) = exp(xθ − Λ(θ))dρ(x)

for some constant θ, reference distribution ρ, and appropriate
function Λ(θ).

I Examples include Binomial, Poisson, Gaussian with known
variance, Gamma distribution with known shape parameter.

I This allows us to think of Kullbach Leibler divergence as a
function of the means of the distributions.

I In the remaining talk, Ω is a collection of vector of parameters
in <K .
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Optimization problem for lower bounds on computational
effort

I Recall the key inequality for δ correct algorithms

K∑

a=1

EµNa × KL(µa||νa) ≥ log

(
1

δ

)

with
K∑

a=1

EµNa = Eµτ



I Lower bound on such algorithms, for µ ∈ Ai ,

min
K∑

a=1

ta

s.t. inf
ν∈Ac

i

K∑

a=1

ta × KL(µa||νa) ≥ 1. (1)

ta ≥ 0, ∀a.

Each ta needs to scale by log( 1
δ ). Re-express (1)

K∑

a=1

ta inf
ν∈Ac

i

K∑

a=1

ta∑K
a=1 ta

× KL(µa||νa) ≥ 1,

we get an equivalent max-min representation

max∑K
a=1 wa=1,wa≥0

inf
ν∈Ac

i

K∑

a=1

wa KL(µa||νa)



A geometric view when A is a half-space

max
w1+w2=1,wi≥0

inf
ν∈Ac

(w1 KL(µ1||ν1) + w2 KL(µ2||ν2))

a1⌫1 + a2⌫2 = b

⌫1

⌫2

Ac

(µ1, µ2) = (0, 0)

w1KL(µ1||⌫1) + w2KL(µ2||⌫2) = C
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Characterizing the solution to
lower bound

Sets A and Ac are half spaces



A, a half-space

I Given

µ ∈ A , {ν ∈ Ω :
K∑

i=1

aiνi < b}

what restrictions do ν ∈ Ac impose on EµNa for each arm a



µ in a half space

Ac
a1x1 + a2x2 = b

x1

x2

A
(m1,	m2)



Optimization problem for lower bounds

I

max∑K
a=1 wa=1,wa≥0

inf
ν∈Ac

K∑

a=1

wa KL(µa||νa)

I Using minimax theorem

inf
ν∈Ac

max∑K
a=1 wa=1,wa≥0

K∑

a=1

wa KL(µa||νa)

I This equals
inf
ν∈Ac

max
a

KL(µa||νa).
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Solving infν∈Ac maxa KL(µa||νa)

I Set (µ1, µ2) = (0, 0).

I Gaussian distribution with variance 1, so KL(µi ||νi ) = ν2
i /2.

Ac

A

(µ1, µ2)=(0,0) n1

n2

max

✓
⌫2
1

2
,
⌫2
2

2

◆



I The optimal solution (w∗, ν∗) corresponds to

KL(µi ||ν∗i ) = KL(µ1||ν∗1 ) ∀i ,

K∑

i=1

aiν
∗
i = b.

I The slope matching condition

w∗i
ai

KL′(µi ||ν∗i ) =
w∗1
a1

KL′(µ1||ν∗1 ).

I And lower bound on expected generated samples

KL(µ1||ν∗1 )−1 × log(
1

2.4δ
).
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Two Gaussian arms with mean zero

a1⌫1 + a2⌫2 = b
⌫1

⌫2

Ac

(µ1, µ2) = (0, 0)

w⇤
1⌫

2
1 + w⇤

2⌫
2
2 = C



When Ac is convex

I Recall the min-max lower bound problem

max∑K
a=1 wa=1,wa≥0

inf
ν∈Ac

K∑

a=1

wa KL(µa||νa)

I Theorem: Let (w∗, ν∗) denote an optimal solution.

I ν∗ is unique. It solves: minν∈Ac maxi Ki (µi |νi )

I There exists a maximal I ⊂ {1, 2, . . . ,K} such that w∗i > 0
for i ∈ I, w∗i = 0 for rest of i ,

KL(µi ||ν∗i ) = Const. for i ∈ I,

KL(µi |ν∗i ) < Const for i ∈ Ic .
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Optimal soln. when Ac is convex

⌫1

⌫2

A

(µ1, µ2) = (0, 0)

(⌫⇤1 , ⌫⇤2 )

max

✓
⌫2
1

2
,
⌫2
2

2

◆

⌫1 = ⌫2

c



δ-correct algorithm that
matches lower bounds



The tracking algorithm

I Which arm to sample and when to stop

I Closely follows Garivier and Kaufmann (2016) that was
proposed in the best arm setting

I At sampling step n, ensure that at least about
√
n samples

allocated to each arm.

I This ensures that with high probability µ̂n approximates µ and
thus the optimization solution w∗(µ̂n) approximates w∗(µ).

I Choose an arm that maximises

w∗(µ̂n)− Ni (n)

n
.
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Stopping rule motivated by Generalized Likelihood Ratio Method (Chernoff)

I After iteration n, suppose µ̂(n) ∈ Ã (either A or Ac)

I Compute logarithm of

maxµ∈Ã Likelihood Ratio (µ)

maxν∈Ãc Likelihood Ratio (ν)
.

I This equals

inf
ν∈Ãc

∑

i

Ni (n)

n
× KL(µ̂n||νi )



Stopping rule

I Let the separation function

β(n, δ) = log
(cn
δ

)

for well chosen c .

I After iteration n, suppose µ̂(n) ∈ Ã (either A or Ac)

I If

inf
ν∈Ãc

∑

i

Ni (n)

n
× KL(µ̂n||νi ) ≥

1

n
β(n, δ)

I then declare µ ∈ Ã

I Else, sample again
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Result

Theorem

The algorithm is δ-correct. If τ(δ) denotes the stopping time, then

lim sup
δ→0

Eµτ(δ)

log(1/δ)
= KL(µ1||ν∗1 )−1.



Perfect interview design



Model of ability and question difficulty

I Suppose candidate’s probability of answering a question
correctly in an evaluation is

P(success) = h(p, x)

I where p ∈ <+ denotes person’s ability (unknown) and x ∈ <+

denotes hardness of the question. h increases with p and
reduces with x

I Two examples

P(success) =
p

p + x
or logit model

1

1 + exp(α(x − p) + β)
.
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We consider the following ..

I A single candidate has ability p not known to evaluator.

I Evaluator needs to decide candidate’s grade, i.e., the interval
[ui , ui+1) in which p lies given

0 = u0 < u1 < u2 < . . . < um.

I The questions are asked sequentially and adaptively in a pure
exploration multi-armed bandit framework
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Single candidate, sequential interrogation

u0=0 u1 u2 u5

p

Prob.	of	success			=					p/(p+x)

x2

0

Ability

Hardness x1 x3

u3 u4
ABCDGrades

2+2	=	?
Climate	
change

Pollution	in
Delhi	



Fixed confidence setting

I We develop lower bounds on expected number of questions
asked, that hold uniformly for all δ - correct algorithms.

An algorithm is said to be δ-correct if

I It asks questions at adaptively chosen levels x1, x2, . . . , xτ for
τ <∞,

I It then announces candidate’s grade with error probability
bounded above by δ, for all δ > 0.
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I We then develop algorithms that up to a dominant term
match the lower bound.

I Key insight is that only up to two level of difficulty questions
need to be asked, and in popular settings, only one.

I That is, after a quick exploration, the algorithm needs to
settle at questions with close to a single level of difficulty
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Single candidate - sequential,
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P(success) = p
p+x
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Lower bound on all δ correct algorithms

I Through change of measure arguments that go back at least
to Lai and Robbins 1985.

I Under probability measure P, the ability of the candidate is
p ∈ [ui , ui+1)

I Under probability measure P̃, the ability of the candidate is
u /∈ [ui , ui+1)

I Question hardness x can be thought of as the arm pulled.
Uncountably many
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key inequality for developing lower bounds

I Adapting Kaufmann, Cappe, Garivier (2016) Lemma 1:

∑

x∈X
EPNx KL

(
p

p + x
|| u

u + x

)
≥ log

(
1

δ

)

I We generalize to uncountably many questions



key inequality for developing lower bounds

I Adapting Kaufmann, Cappe, Garivier (2016) Lemma 1:

∑

x∈X
EPNx KL

(
p

p + x
|| u

u + x

)
≥ log

(
1

δ

)

I We generalize to uncountably many questions



Single threshold setting linear program

p

Prob.	of	success			=					p/(p+x)

u1 PassFail

I Single threshold u1, p < u1, variables normalized by log
(

1
δ

)

min
∑

x

tx

s. t.
∑

x

tx KL

(
p

p + x
|| u1

u1 + x

)
≥ 1,

tx ≥ 0, ∀x



I Linear program

min
∑

x

tx

s. t.
∑

x

txKL

(
p

p + x
|| u1

u1 + x

)
≥ 1,

tx ≥ 0, ∀x .
I Solution

tx∗ =
1

KL
(

p
p+x∗ || u1

u1+x∗

)

where

x∗ = arg max
x

KL

(
p

p + x
|| u1

u1 + x

)
.



Graphical view of maximum separation

x∗ = arg max
x

KL

(
p

p + x
|| u1

u1 + x
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For multi-threshold, p ∈ [u1, u2)

min
∑

x

tx

s. t.
∑

x

tx KL

(
p

p + x
|| u1

u1 + x

)
≥ 1,

and
∑

x

tx KL

(
p

p + x
|| u2

u2 + x

)
≥ 1

I Can restrict to atmost two tx positive

I Re-expressing the constraints

(tx1 + tx2) min
i=1,2

∑

j=1,2

txj
(tx1 + tx2)

KL

(
p

p + xj
|| ui
ui + xj

)
≥ 1
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I Denoting

w =
tx1

tx1 + tx2

,

above simplifies to

m∗ , max
w∈[0,1],x1,x2

min
i=1,2

(w Kui (x1) + (1− w)Kui (x2))

where

Kui (x) , KL

(
p

p + x
|| ui
ui + x

)

I Proposition

Sample complexity of any δ−correct algorithm ≥ 1
m∗ log 1

δ
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The dual

I

max y1 + y2

s. t. y1 Ku1(x) + y2 Ku2(x) ≤ 1, for all x

y1, y2 ≥ 0

I This simplifies to

m∗ = min
λ∈[0,1]

sup
x

(λKu1(x) + (1− λ)Ku2(x))
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Graphical view of the dual minimax problem

min
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sup
x

(λKu1(x) + (1− λ)Ku2(x))

Hardness				x

Ku2(x)

Ku1(x)



Sufficient conditions for single
question level optimality



Dominant separation function
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Intersecting separating functions
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Intersecting separating functions

I Due to quasi-convexity of Ku1 and Ku2 , both the functions are
increasing for x < x∗1 , and decreasing for x > x∗2 .

I Hence,

m∗ = inf
λ∈[0,1]

sup
x∈[x∗1 ,x

∗
2 ]

(λKu1 (x) + (1− λ)Ku2 (x)) .

I Suppose that Ku1 (x) is convex for x ≤ x∗2 .

I Then, λKu1 (x) + (1− λ)Ku2 (x) is convex for x ∈ [x∗1 , x
∗
2 ].

I By Sion’s Minimax Theorem,

m∗ = sup
x∈[x∗1 ,x

∗
2 ]

min(Ku1 (x),Ku2 (x)).
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Sufficient conditions for single question to be optimal

I Result: If the ratio
K ′u1

(x)

K ′u2
(x) is strictly decreasing in interval [x∗1 , x

∗
2 ]

then the intersection point of the two curves Ku1 (x) and Ku2 (x)
uniquely solves the dual problem.

I Result: If the response function h is of the form

h(p, x) =
g(p)

g(p) + k(x)

for strictly increasing, positive functions g and k, then the ratio
K ′u1

(x)

K ′u2
(x) is strictly decreasing in interval [x∗1 , x

∗
2 ] .

I Thus, single question is optimal for logit-type models.
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An Asymptotically Optimal

δ PAC-learning Algorithm



Sequential algorithm

I Adaptively asks a candidate questions X1,X2, . . . that are
measurable relative to the filtration Ft generated by past
questions X1, . . . ,Xt−1 and responses I1, . . . , It−1

I At any stage t = 1, 2, . . ., the algorithm also decides whether
the stopping time τ = t or τ > t

I If the algorithm decides to continue, then it must also
determine Xt+1, the level of difficulty of the next question.

I If the former, it announces that the candidate’s ability lies in
the interval [uJ , uJ+1) for some J.
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First identifying MLE

I Likelihood of observing data (Ij : 1 ≤ i ≤ t) when the
underlying ability is p and the questions are asked at level Xt

L(p; Xt) =
t∏

j=1

(
p

p + Xj

)Ij
(

Xj

p + Xj

)1−Ij

I The log-likelihood equals

t∑

j=1

Ij log

(
p

p + Xj

)
+ (1− Ij) log

(
Xj

p + Xj

)
.

I Thus, the maximum likelihood estimator (mle) p̂t uniquely
solves

t∑

j=1

p

p + Xj
=

t∑

j=1

Ij .
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Stopping rule based on generalized likelihood ratio test

I Consider the ratio of the likelihood of observing the data under
MLE with the likelihood under the most likely alternative
hypothesis. The algorithm stops when this ratio is sufficiently large

I If MLE is p̂t ∈ (ui , ui+1), its likelihood equals L(p̂t ; Xt)

I The likelihood of the most likely alternative hypothesis corresponds
to max(L(ui ,Xt), L(ui+1,Xt))

I The stopping rule corresponds to the log-likelihood ratio, that is,

min
u∈{ui ,ui+1}




t∑

j=1

Ij log

(
p̂t/(p̂t + Xj)

u/(u + Xj)

)
+ (1− Ij) log

(
u + Xj

p̂t + Xj

)


exceeding a threshold β(t, δ) = log( ctα

δ )
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The question selection rule

I Suppose the algorithm has proceeded for t steps, with
Xt = (X1, . . . ,Xt) denoting the level of difficulty of questions
asked

I Next question determined by solving the lower bound
optimization problem, with p̂t in place of p, and finding
questions levels x1(p̂t) and x2(p̂t) with weights w(p̂t) and
1− w(p̂t)

I Next question level Xt+1 is set equal to x1(p̂t) with probability
w(p̂t) and to x2(p̂t) otherwise.

I After observing It+1 one again checks whether the stopping
rule holds or whether the algorithm continues.
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Formal result

I Proposition
Let τ(δ) denote the stopping time and p ∈ [ui , ui+1]. Then the
following two properties are satisfied:

a) Sample complexity

lim
δ→0

EP [τ(δ)]

log δ
= −m∗.

b) δ-PAC Property

P (p̂τ /∈ [ui , ui+1)) ≤ δ.



Conclusions

I We reviewed the evolving literature on regret minimization

I We analyzed the partition identification problem

I We discussed the interview problem.



Conclusions

I We reviewed the evolving literature on regret minimization

I We analyzed the partition identification problem

I We discussed the interview problem.



Conclusions

I We reviewed the evolving literature on regret minimization

I We analyzed the partition identification problem

I We discussed the interview problem.


